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D = 5, N = 2 Geometric Higher Curvature
Supergravity in the Second-Order Canonical Theory
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The supersymmetric extension of the five-dimensional Chern–Simons gravity is stud-
ied from the Hamiltonian point of view. This model containing the Gauss–Bonnet term
quadratic in the Riemann curvature is the gauge theory of the supergroup SU (2, 2/1).
In the first order, the theory has a polynomial structure, but the second-order leads to
a nonpolynomial structure for both the Hamiltonian and the supersymmetry transfor-
mation rules of the fields. The second-order theory has the advantage that the apparent
gauge degrees of freedom are unambiguously removed leaving only the physical ones.
This important feature is analyzed by constructing the second-order Hamiltonian theory.
The gauge invariances of the model and the generator of time evolution are found.

KEY WORDS: geometric supergravity model; higher curvature supergravity;
canonical theory.

1. INTRODUCTION

Recently, the five-dimensional Chern–Simons pure gravity theory (Macı́as
and Lozano, 2001) was formulated in the framework of the canonical covariant
formalism (CCF) (Zandron, 2003a). Later on, having in mind the higher derivative
character of the model, the second-order theory was also constructed (Zandron,
2003b). The explicit covariance of the CCF in all their steps makes possible to
obtain equation of motion constraints and all the dynamical quantities in a very
simple and compact form.

In Zandron (2003a) it was also shown that the relation between the CCF
and the usual canonical component theory is not trivial. This was done by means
of an integral relationship relating the form brackets introduced in the CCF, with
the standard Poisson brackets defined in the canonical component formalism. This
connection between these two different treatments is only possible in the first-order
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CCF, when both field variables the fünfbein V a and the spin connection ωab are
considered as independent variables.

As was shown in Zandron (2003a) for pure D = 5 gravity, the second-order
Hamiltonian formalism cannot be implemented directly from the CCF due to the
higher derivative character of the model. Second time derivatives on the fünfbein
and the electromagnetic fields appear when the spin connection is considered as
an dependent variable.

Consequently, in the Dirac picture we are in the presence of a constrained
Hamiltonian system with a singular higher-order Lagrangian. Therefore, the intro-
duction of the canonical momenta is implemented by means of the Ostrogradski
transformation (Kentwell, 1988; Kersten, 1988; Nesterenko, 1989; Nesterenko
and Nguyen, 1988; Zi-ping, 1990, 1991a,b).

In the present paper we start by considering the D = 5 higher curvature su-
pergravity theory constructed by supersymmetric completion of the Gauss–Bonnet
five-bosonic form (Ferrara et al., 1987). The Lagrangian five-bosonic form of this
purely geometric model has two pieces, one linear and the other one quadratic in
the Riemann curvature. The motivation of the paper is to construct the second-order
Hamiltonian theory. As well known the second-order theory is necessary to remove
without unambiguity the apparent gauge degrees of freedom from the true physical
ones. The first-class constraints which verify the constraint algebra are found, and
so all the Hamiltonian gauge symmetries can be constructed. This step is needed
when the model is analyzed from the quantum point of view. The paper is organized
as follows: In Section 2, the main features of the structure of the D = 5 geometric
higher curvature supergravity are analyzed. In Section 3 the fundamental results
obtained in the context of the CCF are reviewed. In Section 4, the Hamiltonian
second-order theory is constructed. Conclusions are given in Section 5.

2. GEOMETRIC HIGHER CURVATURE SUPERGRAVITY
IN FIVE SPACE–TIME DIMENSUIONS

From a long time ago geometrical models of supergravity in five space–
time dimensions were constructed in the framework of the supergroup manifold
approach (D’Auria et al., 1981, 1982). In particular, N = 2 geometrical super-
gravity in five space–time dimensions can be formulated in both the Poincaré and
the anti de Sitter versions. In what follows we restrict the attention to the Poincaré
version that is the gauge theory of the SU (2, 2/1) Inonü-Wigner contraction of
the SU (2, 2/1) supergroup.

The curvatures are defined by

Ra = DV a − i

2
ξ̄M ∧ �aξM, (1)

Rab = dωab − ωac ∧ ωcb (2)
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ρM = DξM = dξM − 1

4
ωab ∧ (�abξM ) (3)

R⊗ = dA − iξ̄M ∧ ξM. (4)

where the one-form gauge fields are (ωab, V a, ξM,A) (spin connection, fünfbein,
gravitino and Maxwell field respectively), being ξM a pseudo Majorana doublet of
spinors: Cξ̄T

M = εMNξN . The indices a, b, c . . . = 1, 2, 3, 4, 5 are used in tangent
space (Lorentz indices).

In Ref. (Ferrara et al., 1987) by demanding that the theory has interactions
with only one time derivative, it has been shown that a Lagrangian density L(geom)

(2)
quadratic in the Riemann curvature can be added to the following geometrical
Lagrangian density L(geom)

(1) linear in the Riemann curvature,

L(geom)
(1) = 1

3
Rab ∧ V c ∧ V d ∧ V eεabcde + ηRab ∧ Va ∧ Vb ∧ A

+ iηRa ∧ ξ̄M ∧ �aξM ∧ A

+ i(1 − η)Ra ∧ ξ̄M ∧ ξM ∧ Va + i

2
R⊗ ∧ ξ̄M ∧ ξM ∧ A

− i

2
(3 + η)R⊗ ∧ ξ̄M ∧ �aξM ∧ V a − (1 + η)

4
ξ̄M ∧ ξM ∧ ξ̄N ∧ ξN ∧ A

+ (1 + η)

2
ξ̄M ∧ ξM ∧ ξ̄N ∧ �aξN ∧ V a + 2iξ̄M ∧ �abρM ∧ V a ∧ V b

+ 1

4
R⊗ ∧ R⊗ ∧ A + ηRa ∧ Ra ∧ A, (5)

previously determined in Castellani et al. (1983).
The Lagrangian density L(geom)

(2) is obtained by considering the supersym-
metric completion of the Chern–Simons (or Gauss–Bonnet) term Rab ∧ Rcd ∧
V eεabcde quadratic in the Riemann curvature. It can be shown that there are only
two other terms quadratic in curvatures of scale dimension w = 1, and so the
Lagrangian density reads

L(geom)
(2) = α′(Rab ∧ Rcd ∧ V eεabcde + Rab ∧ Rab ∧ A + 2iξ̄M ∧ �abρM ∧ Rab),

(6)
where α′ is a parameter of scale dimension w = 2. We note that by a partial
integration the term Rab ∧ Rab ∧ A is written

Tr

(
R ∧ ω + 1

3
ω ∧ ω ∧ ω

)
(R⊗ + iξ̄M ∧ ξM ), (7)

exhibiting the Chern–Simons form of the Lorentz group.
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Consequently, the total Lagrangian density L of the D = 5 higher curvature
supergravity is given by

L = L(geom)
(1) + L(geom)

(2) (8)

In the group manifold approach the rheonomy principle is introduced
(Castellani et al., 1983), and it essentially states that the outer components of
the curvature remain determined by the inner ones.

In a first-order Lagrangian theory (Ferrara et al., 1987) has been shown
that the variational field equation coming from the Lagrangian (8) ad-
mits the rheonomic solution, which projected in the inner directions (4V a-
projections or space–time equations) imply the following constraints on the inner
components

Einstein equation

Rrb
rc − 1

2
δb
c R

rs
rs − 960α′δ[brspq]

[cijkl] Rij
rsR

kl
pq = FcrF

br − 1

2
δb
c FrsF

rs, (9)

gravitino equation (
�ab + α′Rpq

ab �pq

)
ρM

cdεabcde = 0, (10)

Maxwell equation

εabcde

[
Rab

cd + α′Rab
pqR

pq

cd + 1

2
FabFcd

]
= 0, (11)

torsion equation

εabcdeU
cd
[rsR

e
pq] + Uab

[rsFpq] + 2iα′ρ̄M
[rs�

abρM
pq] = 0, (12)

where in the last equation, Uab
rs is defined by

Uab
rs = δab

rs + 2α′Rab
rs . (13)

Therefore, the inverse of U , i.e. (U−1)rsabU
ab
pq = δrs

pq is given as a power series
of the parameter α′

(U−1)rsab = δrs
pq − 2α′Rrs

ab + 4(α′)2Rrs
pqR

pq

ab + . . . (14)

With these definitions the inner-inner component of the torsion Ra is given by

Ra
bc = −η

4
εabcdeFde + 0(α′)terms. (15)

The Riemann curvature implicit in (U−1) is given in terms of the spin con-
nection corresponding to the inner-inner component of the torsion Ra . Looking
at the Eq. (12) we can see that it is a first-order nonlinear differential equation
for the inner-inner components of the torsion, which must be solved iteratively
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as a power series in α′. So, the solution for the holonomic components of the
total spin connection can be formaly written in terms of the fields (V a

µ , ξM ) and
Fµν = ∂[µAν] as follows

ωab
µ (V, ξ, F ) = ω̂ab

µ (V, ξ ) + ωab
µ (F ) + 0(α′)terms, (16)

where ω̂ab
µ (V, ξ ) is the ordinary spin connection for supergravity in five-

dimensions

ω̂ab
µ (V, ξ ) = 1

2
V aν

(
∂µV b

ν − ∂νV
b
µ

) − 1

2
V bν

(
∂µV a

ν − ∂νV
a
µ

)
− 1

2
V aρV bσ (∂ρVcσ − ∂σVcρ)V c

µ

+ κ2

2

(
ξ̄Mµ�aξb

M − ξ̄Mµ�bξa
M + ξ̄ a

M�µξb
M

)
, (17)

and ωab
µ (F ) writes

ωab
µ (F ) = −η

4
εabcdeFcdVeµ = η

4
εabcde(∂σAρ − ∂ρAσ )V σ

c V
ρ

d Veµ. (18)

In Eqs. (15–16), the term we call 0(α′)terms contains higher derivative ex-
pressions in the fünfbein, the gravitino and Maxwell field.

Therefore, when the second-order Hamiltonian theory is implemented and
the torsion mechanism of propagation takes place, the nonpolynomic structure is
made evident.

3. SUMMARY OF THE MAIN RESULTS OBTAINED IN THE CCF

In the framework of the Hamiltonian theory (Nelson and Regge, 1986) the
higher curvature model under consideration requires the application of the ex-
tended CCF previously developed (Foussats and Zandron, 1989, 1990). The four
Hamiltonian field equations are obtained from the consistency condition on the
primary constraints

dφ� = (φ�,HT ) = −(Field equations of motion) + (φ�,Z�) ∧ φ� ≈ 0, (19)

where the compound indices � and � take the values ((ab), a, α,⊗).
By straightforward calculation and after some lengthy algebraic manipula-

tions the field equations of motion are written as follows torsion equation

dφab = −(Rc ∧ V d ∧ V eεabcde + ηR⊗ ∧ Va ∧ Vb + 2α′Rc ∧ Rdeεabcde

+ 2α′R⊗ ∧ Rab + 2iα′ρ̄M ∧ �abρM ) = 0, (20)
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Einstein equation

dφa = −(Rbc ∧ V d ∧ V eεabcde + 2iRa ∧ ξ̄M ∧ ξM + 2ηRa ∧ R⊗

− i

2
(3 − η)R⊗ ∧ ξ̄M ∧ �aξM − 4iξ̄M ∧ �abρM ∧ V b

+ 2i(1 − η)ρ̄M ∧ ξM ∧ Va + α′Rbc ∧ Rdeεabcde) = 0, (21)

gravitino equation

dφα
M = −(4i(�abρM )α ∧ V a ∧ V b − 4i(�abξM )α ∧ Ra ∧ V b

+ 2i(1 − η)ξα
M ∧ Ra ∧ Va − i(3 + η)(�aξM )α ∧ R⊗ ∧ V a

+ 2iα′(�abρM )α ∧ Rab) = 0, (22)

Maxwell equation

dφ⊗ = −
(

ηRab ∧ Va ∧ Vb − i

2
(3 − η)Ra ∧ ξ̄M ∧ �aξM + 3

2
iR⊗ ∧ ξ̄M ∧ ξM

− i(3 + η)ρ̄M ∧ �aξM ∧ V a + ηRa ∧ Ra

+ 3

4
R⊗ ∧ R⊗ + α′Rab ∧ Rab

)
= 0. (23)

The above motion Eqs. (20–23) have nontrivial solutions only for η = ±1.
For all other values of η the solution is given by the vacuum one, i.e Ra = Rab =
ρ = R⊗ = 0.

In Eq. (19) the four primary constraints φ� which determine the total
Hamiltonian HT = Hcan + �� ∧ φ� (Foussats and Zandron, 1989) are given by

φa = πa − ωbc ∧V d ∧V eεabcde − i(1 − η)ξ̄M ∧ ξM ∧Va − η�⊗ ∧ Va ≈ 0, (24)

φab = πab − 2α′[(�cd + Ccd ) ∧ V eεabcde + (�ab + Cab) ∧ A

+ iξ̄M ∧ �ab(�M + CM )] ≈ 0, (25)

φα
M = πα

M − 2i(�ab ξM )α ∧ V a ∧ V b − 2iα′(�ab ξM )α ∧ (�ab + Cab) ≈ 0, (26)

φ⊗ = π⊗ − ηωab ∧ Va ∧ Vb + i

2
(3 + η)ξ̄M ∧ �aξM ∧ V a

− η�a ∧ Va − 1

2
�⊗ ∧ A ≈ 0. (27)

where we call �� = dµ� and the two-forms C� with constant coefficients are
defined by

Ca = −ωac ∧ Vc − i

2
ξ̄M ∧ �aξM, (28)
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Cab = −ωac ∧ ωcb, (29)

CM = −1

4
ωab ∧ (�abξM ), (30)

C⊗ = −iξ̄M ∧ ξM. (31)

When the form-brackets (φ�, φ�) between constraints are explicitly com-
puted, it is easy to show that none of the primary constraints φ� is first class. The
general result is that in the CCF there are not first-class constraints. On the other
hand, the primary constraints we have found in the CCF, in the framework of the
second-order canonical theory, will be no longer relationships between field and
momentum. These relations depending on the velocities cease to be constraints.
By looking at the Eqs. (24–27) it can be seen that the primary constraints (up to
first order in α′) are written

φ� = φo
� + α′φ′

�, (32)

where the piece φ′
� in general will contain curvatures.

The Eq. (32) can even be treated as a constraint by considering that there are
two versions of the CCF (Foussats and Zandron, 1990) and briefly these are

(i) The version valid for supergravities described by a linear Lagrangian in
curvatures, in which the independent fields variables are the potentials
µ� .

(ii) The extended version valid for supergravities described by a general
polynomial Lagrangian in curvatures, in which the independent field
variables are µ� and �� .

In both versions the total Hamiltonian is given by the same expression, i.e.,
by the equation HT = Hcan + �� ∧ φ� . The relation between both versions can
be obtained only by means of the introduction of the Dirac’s brackets. Once this
is done we can reconsider that �� = ��(µ) are arbitrary polynomials in the field
variables µ� with nonconstant coefficients satisfying the Bianchi identities d�� =
0. Precisely, this procedure yields that the Eq. (32) turns out to be dependent on
the velocities, losing the constraint condition.

Consequently, when the second-order theory is implemented, the new primary
constraints must be determined.

Finally, the motion field equations (four-forms) (20–23) can be projected
along the different sectors V 3ξ , V 2ξ 2, V ξ 3 and ξ 4. Thus, it can be shown how the
outer components of the different curvatures can be determined in terms of the
inner ones. That is, the motion field equations are rheonomics (Castellani et al.,
1983; D’Auria et al., 1981, 1982).
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4. SECOND-ORDER CANONICAL THEORY
AND NEW CONSTRAINTS

In order to derive the second-order canonical theory the model must be
arranged (Dirac, 1962; Nelson and Teitelboim, 1977, 1978; Teitelboim, 1977). As
it was shown in Zandron (2003b) it is not possible go over to the second-order
theory directly from the CCF because of the higher-derivative character of the
model. Therefore, we must return to the original Lagrangian (8) and it must be
written in components.

To construct the second-order canonical theory the first step is to carry
out the space–time decomposition in the manifold M5 as done in Zandron
(2003b) (see also Seahra and Wesson, 2003). Next, all the equations and quanti-
ties given in form language must be written in components. All the dynamical
fields must be considered as reduced forms, i.e. forms defined on the phys-
ical space M5. Moreover, we assume that the reduced forms defined on M5

are written in the holonomic basis dxµ. Therefore, equations, fields and forms
must be projected on a space-like x0 = t = t0 hypersurface � of four dimen-
sions. This is done by considering the injection map χ : � → M5 in such a
way that the associated pull-back χ∗ acts on any generic form by setting t = t0

and dt = 0.
Let us use the space–time decomposition given in Section 2 of Zandron

(2003b). So, from now on we use Greek indices µ, ν, ρ, . . . = 0, 1, 2, 3, 4 for
space time tensors (world indices) and Latin indices i, j, k, . . . for label spatial
components only. The alternating tensors εi1...i4 on the hypersurface � and ε0,i1...i4

on the manifold M5 are related by the equation: N⊥εi1...i4 = −ε0,i1...i4 . Moreover,
εµ1...µ5 = Va1µ1 . . . Va5µ5ε

a1...a5 . In the explicit computations the above relations
and a set of formulae given in Nelson and Regge (1986) relating the fünfbein and
the alternating tensors on �, on the space–time M5, and on the corresponding
tangent space are systematically used.

Following Zandron (2003b), the five-dimensional metric tensor g(5)
µν splits ac-

cording to N⊥ = (−g00)1/2, Ni = g0i , g = det(g(4)), (−g(5))1/2 = N⊥g1/2. More-
over, an arbitrary five-dimensional vector Va can be decomposed as follows:
Va = V⊥na + V iV a

i , where V⊥ = −V⊥ = −naVa and Vi = VaVai .
In the second-order CFF the metricity condition on both the manifold M5

and the four-dimensional hypersurface � can be considered. The first metricity
condition or fünfbein postulate implicates that “the fünfbein is covariantly con-
stant.” That is the full covariant derivative including both the spin and the world
(metric) connection satisfies the standard metricity condition

∂µV a
.ν + ωab

µ Vbν − �(5)ρ
.µν V a

.ρ = 0, (33)

where �(5)ρ
.µν is the affine connection on the five-dimensional manifold M5.
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By considering the spin connection �ab and the affine connection �
(4)i
.jk on

the hypersurface �, we also have

∂kV
a
.j + �ab

k Vbj − �
(4)i
.kj V a

.i = 0, (34)

by virtue of the metricity condition on the four dimensional hypersurface �.
Moreover, by multiplying the Eq. (34) by na holds

∂kn
a + �ab

k nb = 0. (35)

On the other hand, in the Eqs. (33) and (34) both affine connections �(5)ρ
.µν and

�
(4)i
.jk are not longer symmetric in their lower indices due to the torsion generated

by the spinor field ξM . Moreover, a fundamental difference between the Eqs. (33)
and (34) is given by the fact that the affine connection �

(4)i
.jk as functional of the

metric g
(4)
ij on the hipersurface �, only depends on Vai . So, the spin connection

�ab
k is a functional of Vai and its spatial derivatives only. On the other hand, the

restriction to � of the affine connection �(5)ρ
.µν , i.e �

(5)i
.jk and ωab

k not only depends
of Vai but also of their conjugate momenta.

Now, by considering the restriction to the hypersurface � of the Eq. (1)
rewritten in components, and the explicit expression (15) for α′ = 0, the inner–
inner components of the torsion can be written

∂[kV
a
.j ] + ωab

[k Vbj ] − i

2
ξ̄M[k�

aξMj ] − η

4
εabcdeVbkVcjFde = 0. (36)

Taking into account Eqs. (33) and (36) the following expression for the torsion
S

ρ

kj holds

S
ρ

kj ≡ 1

2

(
�

(5)ρ
.kj − �

(5)ρ
.jk

) = i

2
ξ̄M[k�

ρξMj ] + η

4
V ρ

a εabcdeVbkVcjFde (37)

As it can be seen from the Eqs. (33) and (34), in the second-order CFF
both spin connections ωab

µ and �ab
i , in five and four dimensions respectively, can

be determined completely. After some algebraic manipulations the well known
relationship between the spatial components of both spin connections are found

ωab
i = �ab

i + (nbV aj − naV bj )Kij , (38)

where Kij is the extrinsic curvature on the four-dimensional surface � in the
manifold M5. The extrinsic curvature tensor Kij is defined by the following
general equation

Kij = 1

N⊥ (−ġij + Ni‖j + Nj‖i) − Cij⊥, (39)

where the double stroke ‖ denotes the covariant derivative on the four-surface �

only including the affine connection.
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The components Cρµν of the contorsion tensor in the holonomic basis at zero
order in the parameter α′ are defined by

Cρµν = −(Sµρν + Sνµρ + Sρµν), (40)

and so the components Cρµν and Cρµν are respectively given by

Cij⊥ = − i

2
(ξ̄Mi�j ξM⊥ − ξ̄Mi�⊥ξMj + ξ̄Mj�iξM⊥) − η

4
εijklF

kl (41)

Cijk = − i

2
(ξ̄Mi�j ξMk − ξ̄Mi�kξMj + ξ̄Mj�iξMk) + η

4
εijklF

l⊥. (42)

Moreover, for the component ω.ab
⊥ the following equation holds

N⊥ωab
⊥ = 1

2

(
V akδNV b

k − naδNnb − [a → b]
) − (V aknb − V bkna)∂kN

⊥, (43)

where

δNV ak = ∂0V
ak − LNkV ak, (44)

δNna = ∂0n
a − LNkna, (45)

and LNk stands for the Lie derivative operator along Nk in the four-dimensional
hypersurface �.

We note that the components of the contorsion tensor (40) admits an expan-
sion in power series of the parameter α′ analogously to those given in Eqs. (15)
and (16) for the inner-inner components of the torsion and the spin connection
respectively.

At this stage, the Lagrangian (8) must be written in components. We only
write explicitly the pieceL(geom)

(2) of this Lagragian in which second-time derivatives
on the fünfbein and the electromagnetic fields appear once the spin connection is
eliminated as independent variable.

So, the LagrangianL(geom)
(2) without considering total exterior derivatives reads

L(geom)
(2) = N⊥g1/2εαµνρσ α′

{
εabcde

[
∂αωde

µ

(
ωbc

ν ωaf
ρ Vσf + 2ωbf

ν ωf c
ρ V a

σ

)
− ωbf

α ωf c
µ ωdg

ν ωge
ρ V a

σ

] + ∂αωab
µ (ωνab∂ρAσ − 2ωνaf ωρf bAσ )

+ ωaf
α ωf b

µ ωνagωρgbAσ

+ 2i

[
ξ̄Mα(�ab∂µξMν) − 1

4
ωcd

µ (ξ̄Mα�ab)(�cdξMν)

]
Rab

ρσ

}
, (46)

Analogously, it can be written in components the piece L(geom)
(1) of the total

Lagrangian density (8).
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From (46) it can be seen that the second-time derivatives appear because in
the Chern–Simons form it is not possible their elimination by partial integration.
Consequently, in the framework of the Dirac theory we are in presence of a
constrained Hamiltonian system with a singular higher-order Lagrangian.

We start by defining the following independent dynamical field variables

Vaµ = (Vai ; Va0 = naN
⊥ + NiVai), (47)

Baµ = ∂0Vaµ, (48)

Aµ = (Ai ; A0), (49)

Cµ = ∂0Aµ, (50)

ξMµ = (ξMi ; ξMo). (51)

Consequently, by means of the Ostrogradski transformation (Nesterenko,
1989; Zi-ping, 1990, 1991a,b) the following canonical momenta are well defined

�
µ

M (ξ ) = ∂L
∂(∂0ξ̄Mµ)

, (52)

�(1)µ
a = ∂L

∂Ba
µ

− ∂ν

[
∂L

∂(∂νBa
µ)

]
, (53)

�(2)µ
a = ∂L

∂
(
∂0Ba

µ

) , (54)

π (1)µ = ∂L
∂Cµ

− ∂ν

[
∂L

∂(∂νCµ)

]
, (55)

π (2)µ = ∂L
∂(∂0Cµ)

. (56)

The Poisson brackets for pairs of canonical conjugate variables are given by[
ξ̄

(α)
Mµ(x),�ν

N(β)(y)
] = [

�ν
N(β)(y), ξ̄ (α)

Mµ(x)
] = δ

(α)
(β)δ

ν
µδMNδ(x − y), (57)[

V a
ν (x),�(1)µ

b (y)
] = −[

�
(1)µ
b (y), V a

ν (x)
] = δa

b δ
µ
ν δ(x − y), (58)[

Ba
ν (x),�(2)µ

b (y)
] = −[

�
(2)µ
b (y), Ba

ν (x)
] = δa

b δ
µ
ν δ(x − y), (59)[

Aν(x), π (1)µ(y)
] = −[

π (1)µ(y), Aν(x)
] = δµ

ν δ(x − y), (60)[
Cν(x), π (2)µ(y)

] = −[
π (2)µ(y), Cν(x)

] = δµ
ν δ(x − y). (61)

Having in mind the total Lagrangian (8) written in components from
the Equation (52–56) and by means of straightforward but heavy algebraic
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manipulation the different momenta can be computed and the following results are
found:

(a) When the spatial components of the momentum (52) and (54), i.e
�(1)i

c and π (1)i respectively are explicitly computed expressions depend-
ing on the velocities are obtained, therefore these relations do not define
constraints.

(b) The remaining components of the momenta defined by (52–56) are rela-
tionships between fields and canonical conjugate momenta independent
on the velocities, given rise the primary constraints in the second-order
theory.

The fermionic primary constraints can be written as follows

�
p

M (ξ ) = �
µ

M (ξ ) − α′(�aξb
M − �bξa

M

)
Qabjkl

(
ωjab, V

a
k , Ak

)
εpjkl

− α′(V ap�iξ
b
M − V bp�iξ

a
M

)
Qabjkl

(
ωjab, V

a
k , Ak

)
εijkl

− 2i

[
1

2

(
V a

k V b
l − V b

k V a
l

) + α′Rab
kl

]
εpjkl ≈ 0, (62)

�0
M (ξ ) = �0

M (ξ ) − α′(V a0�iξ
b
M − V b0�iξ

a
M

)
Qabjkl

(
ωjab, V

a
k , Ak

)
εijkl ≈ 0,

(63)

where the bosonic functional Qabjkl(ωjab, V
a
k , Ak) reads

Qabjkl

(
ωjab, V

a
k , Ak

) = N⊥g1/2
[
ωjab(∂kAl) − 2ωjacω

c
kbAl + ωcd

j (∂kV
e
l )εabcde

]
.

(64)

Analogously, it can be computed the remaining bosonic primary constraints.
They can be formally written as follows

�(2)i
c = �(2)i

c − F i
c

(
ω.ab

k , V a
µ ,Aµ, ξMµ

) ≈ 0, (65)

�(2)0
c = �(2)0

c ≈ 0, (66)

φ(2)i = π (2)i − Gi
(
ω.ab

k , V a
µ ,Aµ, ξMµ

) ≈ 0, (67)

φ(2)0 = π (2)0 ≈ 0, (68)

�(1)0
c = �(1)0

c − J 0
c

(
ω.ab

k , V a
µ ,Aµ, ξMµ

) ≈ 0, (69)

φ(1)0 = π (1)0 − K0
(
ω.ab

k , V a
µ ,Aµ, ξMµ

) ≈ 0. (70)

The above functions we are named F i
c , Gi , J 0

c and K0 are expressions which
depend on the spatial components and the perpendicular component of the total
spin connection (16) and its spatial derivatives, as well as the components of the
remaining fields. By means of lengthy but direct calculations, it is possible to
show that the constraints and the canonical Hamiltonian Hcan can be written in
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terms of the canonical momenta and the quantities Vai , Aµ, ξ⊥
M , ξ i

M , �ab
i , ω.ab

⊥ ,
Kij , Ni and N⊥. It is not necessary to give explicitly the expressions of the above
functions since our final purpose is to write the total Hamiltonian generator of
time evolution in terms of the first-class constraints.

From the momenta given in (52–56), the canonical HamiltonianHcan remains
defined by

Hcan = Ba
µ�(1)µ

a + Ḃa
µ�(2)µ

a + Cµπ (1)µ + Ċµπ (2)µ + ˙̄ξMµ�
µ

M (ξ ) − L (71)

where it was replaced ∂0V
a
µ for Ba

µ and ∂0Aµ for Cµ . We note that the canonical
Hamiltonian is formed by eliminating only the velocities ∂0B

a
µ and ∂0Cµ. The

field Ba
µ and Cµ cannot be eliminated from the theory when we treat with higher

derivative Lagrangians (Zandron, 2003b). Once the explicit expression of the L is
used in the expression of Hcan, the velocities Ḃa

µ and Ċµ are eliminated.
Finally, the total Hamiltonian generator of time evolution of generic func-

tionals is given by

HT =
∫

d4xHT , (72)

where

HT = Hcan + λ(2)c
.µ �(2)µ

c + λ
(1)c
.0 �(1)0

c + χ (2)c
.µ �(2)µ

c + χ
(1)c
.0 �(1)0

c + θMµ�
µ

M. (73)

In Eq. (73) the arbitrary bosonic and fermionic Lagrange multipliers are
evaluated by means of the Hamilton equations Ȧ = [A,HT ]PB.

At this stage, from the stationary condition on the primary constraints, it is
possible to define successively the secondary constraints according to the well
known Dirac algorithm

�(k) = [
�(k−1),HT

]
PB. (74)

This algorithm must be continued until �(k) satisfies

�(k+1) = [
�(k),HT

]
PB = Ca

.cn�
(n)
a . (75)

It can be shown that in the model under consideration there is a set of
secondary constraints. By explicit computation it can be shown that

�(1)
c = �̇(2)0

c = [
�(2)0

c , HT

]
PB ≈ 0, (76)

and

�(1) = φ̇(2)0 = [φ(2)0,HT ]PB ≈ 0, (77)

are weakly zero quantities.
From now on, following the Dirac’s prescriptions, the procedure can be

continued for each one of the constraints. The Poisson brackets different from zero
which must be evaluated are essentially [�(2)i

c (x), ωab
µ (y)]PB, [�(1)ρ

c (x), ωab
µ (y)]PB,
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[π (2)i(x), ωab
µ (y)]PB, [π (1)µ(x), ωab

µ (y)]PB and [�Mρ(x), ωab
µ (y)]PB. Though, the

explicit computation is straightforward, it involves heavy algebraic manipulations.
Moreover, when the computation of the Poisson brackets is carried out, it can

be seen that none of the secondary constraints is first class.
Some conclusions can be obtained. Looking at the primary constraints (65–

70) and taking into account the secondary constraints constructed by means of
application of the Dirac algorithm (74), it can be seen that the uniques primary
constraints having vanishing Poisson brackets with all the other ones are �(2)0

c and
φ(2)0. So, the primary constraints �(2)0

c and φ(2)0 are first-class and they correspond
to gauge invariances of the model under local gauge transformations.

Consequently, it can be said that the five-dimensional higher curvature super-
gravity theory in the second-order theory has primary and secondary constraints.
This set has constraints of first and second class. The presence of second-class
constraints make necessary to follow the prescriptions of the Dirac theory. In this
sense, the Dirac brackets must be first defined from the Poisson brackets, and next
the second-class constraints must be eliminated from the theory by taking them
strongly equal to zero.

On the other hand, by assuming for simplicity that α′ = 0, it is possible
to show that the other first-class constraints can be constructed by considering
appropriate linear combination of constraints. It is well known that these 4-form
antisymmetric weakly vanishing quantities Mabd

4x, remain defined by

Mabd
4x = �a ∧ Vb − �b ∧ Va ≈ 0. (78)

These 10 constraints Mab are the generators of the local Lorentz group for
all the fields of the model (Foussats et al., 1992; Nelson and Regge, 1986).

In Eq. (78) �a = φa |� (restriction to � of the primary constraint (24)), is the
unique constraint that is maintained as weakly zero one, even in the second order
theory. Precisely, the reason is that a suitable linear combination of it generates
a first-class constraint. Contrarily to what it happens in the canonical component
theory (Castellani et al., 1982; Deser and Isham, 1976; Pilati, 1978) this fact
naturally appears in the CCF.

By following Nelson and Teitelboim (1977, 1978) the momentum three-form
�a in the second-order theory is defined by

�a = πa − �de ∧ V b ∧ V cεabcde (79)

where �de was defined in (38). After straightforward calculation the constraint
�a is written

�a = �a + 4
(
V k

a g(4)ij − V i
a g(4)jk

)
Kkj�i − 4naC

i
jkg

(4)jk�i. (80)
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Finally, in order to write the generator of time evolution in its final form the
total Hamiltonian HT (72) is written as follows

HT =
∫

µ�
0 H�(x)d4x

=
∫ [

1

2
ωab

0 Hab(x) + V a
0 Ha(x) + ξ̄M0HM (x) + H̄M (x)ξM0 + A0H⊗(x)

]
,

(81)

where we have written explicitly the Lagrange multipliers µ�
0 given by the time

components of the field variables µ� = (ωab, V a, ξM,A). By following usual
methods, it can be seen that the weakly zero functions Hab(x), Ha(x), HM (x)
and H⊗(x) are precisely the projections on the hypersurface � of the motion
Eqs. (20–23) (torsion, Einstein, gravitino, and Maxwell equations respectively),
plus weakly zero quantities (Foussats et al., 1992; Nelson and Teitelboim, 1977,
1978; Teitelboim, 1977). By starting from Eqs. (20–23) after some algebraic
manipulations and by neglecting total divergences, it is possible to arrive at the
following expressions for the four-forms H�(x)d4x

Hab(x)d4x = −[Rc ∧ V d ∧ V eεabcde + ηR⊗ ∧ Va ∧ Vb] |�
+ (�a ∧ Vb − �b ∧ Va) ≈ 0, (82)

Ha(x)d4x = −[Rbc ∧ V d ∧ V eεabcde + 2iRa ∧ ξ̄M ∧ ξM + 2ηRa ∧ R⊗

− i

2
(3 − η)R⊗ ∧ ξ̄M ∧ �aξM − 4iξ̄M ∧ �abDξM ∧ V b

+ 2i(1 − η)Dξ̄M ∧ ξM ∧Va]|� − 2
(η

4
εcabdeFdeVb +ωca

)
∧ �c ≈ 0,

(83)

HM (x)d4x = −[4i(�abDξM ) ∧ V a ∧ V b − 4i(�abξM ) ∧ Ra ∧ V b

+ 2i(1 − η)ξM ∧ Ra ∧ Va − i(3 + η)(�aξM ) ∧ R⊗ ∧ V a] |�
− i

2
ξM�a ∧ �a ≈ 0, (84)

H⊗(x)d4x = −
[
ηRab ∧Va ∧Vb − i

2
(3 − η)Ra ∧ ξ̄M ∧�aξM + 3

2
iR⊗ ∧ ξ̄M ∧ ξM

− i(3 + η)Dξ̄M ∧ �aξM ∧ V a + ηRa ∧ Ra + 3

4
R⊗ ∧ R⊗

]
|�= 0.

(85)

By straightforward computation it is possible to show that the weakly zero
quantities H�(x) defined in Eqs. (82–85) are the generators of all the Hamiltonian
gauge symmetries. Moreover, this set of first-class constraints closes the constraint
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superalgebra, in complete analogy with what happened in the simple supergravity
case (Nelson and Teitelboim, 1977, 1978), that is

[H�(x) , H�(y)] = ��
��H�(x)δ(x − y), (86)

where ��
�� = R�

�� − C�
�� (for the compound indices �,�,�) are the structure

functions for curvatures R�
�� and structure constant C�

�� of the correspondent
graded Lie algebra.

5. CONCLUSIONS

Recently (Zandron, 2003a), the topological five-dimensional Chern–Simons
pure gravity was formulated in the framework of the first-order extended canonical
covariant theory (CCF). The relation between the CCF and the usual first-order
canonical formalism written in components was also given. This relation was done
by means of a nontrivial integral relationship between the form brackets and the
usual Poisson brackets.

As was shown, the CCF is not a proper canonical theory because it does
not propagate data defined on an initial hypersurface as required by a standard
mechanical system.

In spite of this, at classical level the CCF is a powerful method to understand
the structure of the gravitational field, particularly in more than four dimensions
and for higher curvature gravity models. The CCF is covariant in all its steps be-
cause of the use of exterior algebra. This allows to find the equations of motion and
the constraints in a very simple way without introducing complicate calculations.

Moreover, from the CCF only is possible go over to the proper canonical
formalism in the first-order formulation, i.e. when the spin connection, the fünfbein
and the electromagnetic field are taken as independent dynamical variables.

Contrarily to what it happens in the CCF, in the second-order CFF after long
and heavy algebraic manipulations, cumbersome noncovariant expressions for the
physical quantities are obtained.

As it was shown, the torsion equation allows to obtain the second-order
canonical formalism starting from the first-order one. In the Riemannian pure
gravity case, the torsion equation Ra = 0 must be considered as an strongly equal
to zero constraint, and so the spin connection is solved in terms of the fünfbein.

On the other hand, in D = 5 higher curvature supergravity the first-order
CCF contains a finite number of terms in the Hamiltonian. The torsion equation
of motion (12) is a first-order differential equation, which must be solved via
an iterative procedure given rise a power series solution in the curvature. Thus,
when the mechanism of the torsion equation is used, we arrive to the second-order
formalism in which the nonpolynomial structure of the theory is made evident.

Because of the higher-derivative character of the model, the presence of
second-time derivatives on the fünfbein and on the electromagnetic fields, makes
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necessary the implementation of the Ostrogradski transformation in order to intro-
duce canonical momenta. Essentially, this implicates to take the first-time derivate
of both the fünfbein and the electromagnetic fields as independent dynamical
ones.

Once the space–time decomposition in M5 was performed, the constrained
Hamiltonian system must be treated as usual according to the Dirac prescriptions.
The canonical Hamiltonian is evaluated from the Eq. (71). Later on, the total
Hamiltonian (72) as generator of time evolution can be given in terms of the first-
class constraints (82–85) which close the constraint superalgebra (86). Therefore,
all the Hamiltonian gauge symmetries remain determined and so, the apparent
gauge degrees of freedom can be unambiguously removed leaving only the phys-
ical ones.

It is important to note that starting from the CCF the first-class constraints are
directly obtained by restricting to the hypersurface � the field equations of motion
arising from the CCF. In particular the first-class constraint Hab (associated to the
Lagrange multiplier ωab

o ) naturally appears. It is not necessary to incorporate it
by adding by hand terms to the Hamiltonian as usually is done when the starting
point is the component formalism (Castellani et al., 1982; Deser and Isham, 1976;
Pilati, 1978).

When the model is considered from the quantum point of view the second
order formalism, and the knowledge of the constraints (82–85) is unavoidable.
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